Tổng phù hợp Công thức Toán lớp 11 Đại số, Hình học tập cụ thể, không thiếu thốn cả năm
Việc lưu giữ đúng chuẩn một công thức Toán lớp 11 nhập hàng trăm ngàn công thức ko cần là sự việc đơn giản và dễ dàng, với mục tiêu chung học viên đơn giản và dễ dàng rộng lớn trong các việc lưu giữ Công thức, VietJack biên soạn bạn dạng tóm lược Công thức Toán lớp 11 Đại số và Hình học tập không thiếu thốn, cụ thể Học kì 1, Học kì 2 được biên soạn theo dõi từng chương. Hi vọng loạt bài bác này tiếp tục như thể cuốn tuột tay công thức giúp cho bạn học tập đảm bảo chất lượng môn Toán lớp 11 rộng lớn.
Tài liệu tóm lược công thức Toán lớp 11 Đại số và Hình học tập bao gồm 8 chương, liệt kê những công thức cần thiết nhất:
Bạn đang xem: học công thức toán 11
Công thức giải thời gian nhanh Đại số lớp 11 cụ thể nhất
Chương 1: Hàm số lượng giác và phương trình lượng giác
Chương 2: Tổ hợp - xác suất
Chương 3: Dãy số - Cấp số cộng và cấp số nhân
Chương 4: Giới hạn
Chương 5: Đạo hàm
Công thức giải thời gian nhanh Hình học tập lớp 11 cụ thể nhất
Chương 1: Phép dời hình và phép đồng dạng nhập mặt phẳng
Chương 2: Đường thẳng và mặt phẳng nhập không khí. Quan hệ tuy vậy song
Chương 3: Vectơ nhập không khí. Quan hệ vuông góc nhập ko gian
Hi vọng với bài bác tóm lược công thức Toán 11 này, học viên tiếp tục đơn giản và dễ dàng lưu giữ được công thức và biết cách thực hiện những dạng bài bác tập luyện Toán lớp 11. Mời chúng ta đón xem:
Công thức giải thời gian nhanh Toán lớp 11 Chương 1 Đại số
I. HÀM SỐ LƯỢNG GIÁC
1. Hàm số hắn = sinx
- TXĐ: và -1 ≤ sinx ≤ 1 ,
- Là hàm số lẻ
- Là hàm số tuần trả chu kì là 2π
- Hàm số đồng trở nên bên trên
- Hàm số nghịch tặc trở nên bên trên
2. Hàm số hắn = cosx
- TXĐ: và -1 ≤ sinx ≤ 1 ,
- Hàm số chẵn
- Là hàm số tuần trả chu kì là 2π
- Hàm số đồng trở nên bên trên (-π + k2π ; k2π)
- Hàm số nghịch tặc trở nên bên trên (k2π ; π + k2π)
3. Hàm số hắn = tanx
-TXĐ:
- Hàm số lẻ
- Là hàm số tuần trả chu kì là π
- Hàm số đồng trở nên bên trên
- Có những lối tiệm cận
4. Hàm số hắn = cotx
- TXĐ:
- Hàm số lẻ
- Là hàm số tuần trả chu kì là π
- Hàm số nghịch tặc trở nên nhập (kπ π + kπ)
- Có những lối tiệm cận x = kπ
II. CÔNG THỨC LƯỢNG GIÁC
+) Công thức lượng giác cơ bản:
+) Giá trị lượng giác của những cung sở hữu tương quan quan trọng đặc biệt.
- Cung đối nhau: α và -α
cos(-α ) = cos α
sin(-α ) = -sinα
tan(-α ) = -tanα
cot(-α ) = -cot α.
- Cung bù nhau: α và π - α
sin(π - α ) = sinα
cos(π - α ) = -cosα
tan(π - α ) = -tanα
cot(π - α ) = -cotα .
- Cung rộng lớn thông thường π : α và (α + π)
sin(α + π) = -sinα
cos (α + π = -cosα
tan(α + π) = tanα
cot(α + π) = cotα
- Cung phụ nhau: α và
→ cos đối, sin bù, phụ chéo cánh, rộng lớn thông thường π tan và cot.
+) Hai cung rộng lớn thông thường :
3. CÔNG THỨC LƯỢNG GIÁC
+) Công thức cộng
cos(a - b) = cosa cosb + sina sinb
cos(a + b) = cosa cosb - sina sinb
sin(a - b) = sina cosb - cosa sinb
sin(a + b) = sina cosb + cosa sinb
+) Công thức nhân đôi
sin2a = 2sina cosa
cos2a = cos2a - sin2a = 2cos2a - 1 = 1 - 2sin2
+) Công thức nhân ba
sin3a = 3sina - 4sin3a
cos3a = 4cos3a - 3cosa
+) Công thức hạ bậc
+) Các hệ quả
+) Công thức đổi khác tích trở nên tổng
+) Công thức đổi khác tổng trở nên tích:
+) điều đặc biệt khi a = b = α
III. PHƯƠNG TRÌNH LƯỢNG GIÁC
1. Phương trình lượng giác cơ bản
Đặc biệt:
2. Phương trình bậc nhị so với một hàm con số giác
Giải lấy nghiệm t tương thích tiếp sau đó vận dụng phương trình cơ bạn dạng
Chú ý: cos2x = 2cos2x - 1 = 1 - 2sin2x = cos2x - sin2x
sin2x = 1 - cos2x
cos2x = 1 - sin2x
3. Phương trình hàng đầu so với sinx và cosx
- Dạng phương trình: asinx + bcosx = c
- Điều khiếu nại sở hữu nghiệm: a2 + b2 ≥ c2
- Phương pháp giải: Chia 2 vế phương trình mang đến , tiếp sau đó vận dụng công thức nằm trong để lấy về dạng phương trình cơ bạn dạng.
4. Phương trình quý phái bậc nhị so với sinu và cosu
Dạng asin2u + bsinu.cosu + c.cos2u = d
Cách giải
+ Kiểm tra coi cosu = 0 sở hữu thỏa mãn nhu cầu phương trình hoặc không?
Xét
Thay cosu = 0 nhập pt (nhớ sin2u = 1 )
+ Xét
Chia 2 vế pt mang đến , giải pt theo dõi .
Ghi chú: cũng có thể giải bằng phương pháp người sử dụng công thức hạ bậc fake về dạng asin2u + bcos2u = c .
5. Phương trình đối xứng, phản đối xứng
Xem thêm: Hà Nội đã công bố hướng dẫn tuyển sinh lớp 10, teen 2k3 chú ý!
- Dạng phương trình chứa chấp sinu ± cosu và sinu.cosu
- Cách giải
Đặt
Thay nhập phương trình vẫn mang đến tớ được phương trình bậc nhị theo dõi t.
Chú ý:
Công thức giải thời gian nhanh Toán lớp 11 Chương 2 Đại số
I. Đại số tổ hợp
1. Quy tắc cộng
Công việc chia thành 2 ngôi trường hợp:
- Trường phù hợp 1: sở hữu m cơ hội.
- Trường phù hợp 2: sở hữu n cơ hội.
Khi cơ, tổng số cơ hội triển khai là .
2. Quy tắc nhân
Sự vật 1 sở hữu m cơ hội. Ứng với một cách lựa chọn bên trên tớ sở hữu n cơ hội lựa chọn sự vật 2.
Khi cơ, toàn bộ số cơ hội lựa chọn thường xuyên 2 sự vật là mn .
3. Giai thừa
n! = 1.2.3...(n -1)n
Qui ước: ): 0! = 1
Lưu ý:
n! = (n -1)!n = (n - 2)!(n - 1)n = ...
4. Hoán vị
n vật bố trí nhập n địa điểm, số cơ hội xếp là: Pn = n!
5. Chỉnh hợp
n vật, kéo ra k vật rồi bố trí trật tự, số cơ hội xếp là:
6. Tổ hợp
n vật, kéo ra vật tuy nhiên ko bố trí trật tự, số cơ hội xếp là:
7. Một số kiến thức và kỹ năng cần thiết nhớ
Số phân chia không còn mang đến 2 : tận nằm trong là 2 ; 4; 6; 8
Số phân chia không còn mang đến 5 : tận nằm trong là 0;5
Số phân chia không còn mang đến 10 : tận nằm trong là 0
Số phân chia không còn mang đến 100 khi tận nằm trong là 00;25;50;75
Số phân chia không còn mang đến 3 : tổng những chữ số phân chia không còn mang đến 3 .
Số phân chia không còn mang đến 9 : tổng những chữ số phân chia không còn mang đến 9 .
Khi bắt gặp bài bác tập luyện số ngẫu nhiên nhưng mà nhập cơ sở hữu tương quan số 0 nên phân chia tình huống.
+) Tính chất
II. Nhị thức Newton
1. Khai triển nhị thức Newton
2. Một số công thức nên nhớ
3. Tam giác Pacal (cho biết độ quý hiếm của )
III. Xác suất
Không gian tham mẫu: Ω
Số thành phần của không khí mẫu: n(Ω)
1. Xác suất của trở nên cố A:
Lưu ý: 0 ≤ P(A) ≤ 1
2. A1; A2; …; Ak là những trở nên cố song một xung tự khắc thì
P(A1 ∪ A2 ∪...∪Ak) = P(A1) + P(A2) +...+ P(Ak)
3. A1; A2; …; Ak là những trở nên cố song lập thì
P(A1A2...Ak) = P(A1)P(A2)...P(Ak)
4. là trở nên cố đối của trở nên cố A thì:
Hay tớ có:
5. X là trở nên tình cờ tách rốc với tập luyện độ quý hiếm là {x1; x2;…;xn}
a) Kỳ vọng của X là với pi = P(X = xi), i = 1,2,3,…,n
b) Phương sai của X là hoặc
nhập cơ và pi = P(X = xi) , i = 1,2,3,...,n và μ = E(X)
c) Độ nghiêng chuẩn:
Công thức giải thời gian nhanh Toán lớp 11 Chương 1 Hình học
1. Đại cương về luật lệ trở nên hình
PBH F : (biến M trở nên độc nhất một điểm M' ), kí hiệu M' = F(M)
- Hình H' = F(H) ⇔ H' =
- O = F(O) ⇔ O là vấn đề bất động đậy.
- PBH nhưng mà từng điểm nhập mặt mũi phẳng phiu đều trở thành chủ yếu nó được gọi là luật lệ như nhau. Kí hiệu .
- (tích nhị PBH bằng phương pháp triển khai thường xuyên PBH F rồi G )
2. Phép dời hình
PBH F là PDH và A' = F(A); B' = F(B) thì A'B' = AB (bảo toàn khoảng cách thân thích nhị điểm bất kì)
PDH trở nên
3. Phép tịnh tiến bộ theo dõi , kí hiệu
4. Phép đối xứng trục (ĐXTR) d , kí hiệu Đd
đối xứng nhau qua loa d
5. Phép đối xứng tâm (ĐXT) I , kí hiệu ĐI
6. Phép vị tự động (PVT) tâm I tỉ số k , kí hiệu V(I;k)
7. Phép đồng dạng (PĐD)
PĐD tỉ số k (k > 0) là PBH sao mang đến với nhị điểm A;B bất kì và hình ảnh A';B' của chính nó tớ sở hữu A'B' = kAB
PĐD trở nên
8. Biểu thức tọa độ
Giả sử M(x;y) , M(x';y') .
+) PTT theo dõi là
+) Phép đối xứng tâm I(a;b) là
+) Phép đối xứng trục d khi
+) Phép tảo tâm I(a;b) , góc α là
Đặc biệt: Tâm tảo là O(0;0) thì
Phép vị tự động tâm I(a;b) , tỉ số k là
9. Hình ảnh của đường thẳng liền mạch d qua loa PTT; luật lệ ĐXT; PQ; PVT
Giả sử F: ( F ở đấy là
). Lấy M(x;y) ∈ d . Giả sử F:
với M'(x';y')
Viết biểu thức tọa phỏng ứng với PBH đề mang đến ⇒
Ta sở hữu M ∈ d (thay x;y nhập đường thẳng liền mạch d ) tớ được đường thẳng liền mạch d' .
10. Hình ảnh của lối tròn
Giả sử F: ( ở đấy là
)
Xác lăm le tâm I của lối tròn trặn (C) . Tìm hình ảnh I' của I qua loa PBH F .
Ta có: (riêng luật lệ vị tự động thì
). Từ cơ tớ sở hữu phương trình (C') .
11. Tâm vị tự động của hai tuyến đường tròn
TH1: Nếu I ≡ I' thì PVT tâm O ≡ I, tỉ số và PVT tâm O ≡ I, tỉ số
.
TH2: Nếu I ≠ I' và R ≠ R' thì PVT tâm O1 (tâm vị tự động ngoài), tỉ số và PVT tâm O2 (tâm vị tự động trong), tỉ số
.
TH3: Nếu I ≠ I' và R = R' thì PVT tâm O, tỉ số k = = -1
Tóm tắt công thức Toán lớp 11 theo dõi học tập kì:
- Công thức giải thời gian nhanh Toán lớp 11 Học kì 1 cụ thể nhất
- Công thức giải thời gian nhanh Toán lớp 11 Học kì 2 cụ thể nhất
Săn SALE shopee mon 7:
- Đồ người sử dụng tiếp thu kiến thức giá thành rẻ
- Sữa chăm sóc thể Vaseline chỉ rộng lớn 40k/chai
- Tsubaki 199k/3 chai
- L'Oreal mua 1 tặng 3
ĐỀ THI, GIÁO ÁN, KHÓA HỌC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 6
Bộ giáo án, bài bác giảng powerpoint, đề ganh đua giành riêng cho nghề giáo và khóa đào tạo giành riêng cho bố mẹ bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài tương hỗ ĐK : 084 283 45 85
Đã sở hữu ứng dụng VietJack bên trên điện thoại thông minh, giải bài bác tập luyện SGK, SBT Soạn văn, Văn kiểu, Thi online, Bài giảng....miễn phí. Tải tức thì phần mềm bên trên Android và iOS.
Nhóm tiếp thu kiến thức facebook free mang đến teen 2k10: fb.com/groups/hoctap2k10/
Xem thêm: Phân tích tác phẩm "Thái sư Trần Thủ Độ (Ngô Sĩ Liên)" Môn Ngữ văn Lớp 10
Theo dõi Shop chúng tôi free bên trên social facebook và youtube:
Loạt bài bác 500 Công thức, Định Lí, Định nghĩa Toán, Vật Lí, Hóa học tập, Sinh học được biên soạn bám sát nội dung lịch trình học tập những cấp cho.
Nếu thấy hoặc, hãy khuyến khích và share nhé! Các comment ko phù phù hợp với nội quy comment trang web có khả năng sẽ bị cấm comment vĩnh viễn.
Bình luận